

НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР

"Электронная аппаратура"

Извещатель охранный линейный радиоволновой для периметров

"ПРИЗМА-3-10/60ИТ"
"ПРИЗМА-3-10/60ИТА"
"ПРИЗМА-3-10/60ИТС"
"ПРИЗМА-3-10/60ИТСА"

ОМЛД. 25.002-39

ТУ 4372-001-24009810-14

Изготовитель: НТЦ "Электронная аппаратура" ДЕКЛАРАЦИЯ СООТВЕТСТВИЯ №EAЭC N RU Д-RU.HB26.B.02457/20

РУКОВОДСТВО ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ **ОМЛД.** 25. 002-24 РЭ

Россия

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	3
2. НАЗНАЧЕНИЕ	3
3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
4. УКАЗАНИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ	5
4.1 Формирование 30 на открытой местности	
5. КОМПЛЕКТ ПОСТАВКИ	8
6.1 ПРИНЦИП РАБОТЫ	
7. МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ	16
8. ТАРА И УПАКОВКА	16
9.МЕРЫ БЕЗОПАСНОСТИ	
10. ПОРЯДОК УСТАНОВКИ	17
10.1 ТРЕБОВАНИЯ К ПОДГОТОВКЕ УЧАСТКА И РАЗМЕЩЕНИЮ ИЗВЕЩАТЕЛЯ	17 17 18 18
11. ПОДГОТОВКА ИЗВЕЩАТЕЛЯ К РАБОТЕ	19
11.1 ПОДГОТОВКА ИЗВЕЩАТЕЛЯ	20 20 20
12.РЕГЛАМЕНТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ	21
13. ОБСЛУЖИВАНИЕ КОНТРОЛИРУЕМОГО РУБЕЖА	22
14. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	

1. ВВЕДЕНИЕ

- 1.1 Настоящее руководство предназначено для изучения правил монтажа и эксплуатации периметрового двухпозиционного извещателя «Призма-3-10/60ИТ», «Призма-3-10/60ИТА», «Призма-3-10/60ИТС», «Призма-3-10/60ИТСА» ОМЛД. 25. 002-39.
 - 1.2 В руководстве приняты следующие обозначения:

извещатель - «Призма-3-10/60...»; БПРМ - блок приемный; БПРД - блок передающий; ЧЗ — чувствительная зона; ЗО — зона обнаружения; ППК — прибор приемно-контрольный; RTp—контрольный резистор, необходимый для работы ППК; ТР (ШС) —шлейф сигнализации (линия для контроля состояния извещателя — «Дежурный режим»/«Тревога»); НЗ — нормально замкнутый; НР — нормальноразомкнутый; АР «С2000-АР1» исп.02-адресный расширитель мини или АР1; КДЛ- контролер двухпроводной линии связи; ДПЛС- двухпроводная линия связи.

- 1.3 **Чувствительная зона** это замкнутая объемная область в форме эллипсоида вращения с большой осью, совпадающей с условной прямой линией, соединяющей центры БПРД и БПРМ извещателя. Поперечные размеры ЧЗ ограничиваются 5-й зоной Френеля и различными поверхностями, расположенными ближе 5-й зоны от оси.
- 1.4 **Зона обнаружения** это часть чувствительной зоны, которая изменяет форму и размеры сечения в зависимости от ориентации блоков (наклонная/вертикальная) и, в случае вертикальной ориентации блоков, от расстояния от оси, соединяющей центры БПРД и БПРМ, до отражающих предметов, заграждений, стен, столбов или деревьев. Т. е. при вертикальной ориентации блоков, чем ближе ось к отражающим предметам, тем шире ЗО (подробнее см. п. 6.1).

2. НАЗНАЧЕНИЕ

- 2.1 Извещатель предназначен для контроля охраняемых рубежей непосредственно на полотне заграждения, стенах зданий и сооружений, участков вдоль столбов, а так же прямолинейных открытых участков охраняемого рубежа и выдачи тревожного извещения при вторжении нарушителя в зону обнаружения. Извещатель работает вместе с адресным расширителем «С2000-АР1» и применяется для работы с контроллером двухпроводной линии связи «С2000-КДЛ» или «С2000-КДЛ-2И» в составе интегрированной системы охраны «Орион».
 - 2.2 В зависимости от решаемых задач, 30 может формироваться:
 - а) вдоль полотна заграждения (стены здания) для контроля подхода;
 - б) вдоль верхней части заграждения;
 - в) вдоль поверхности земли на открытых участках рубежа.
- 2.3 Извещатель предназначен для совместной работы с аппаратурой, фиксирующей размыкание контактной пары или изменение величины сопротивления выходной контрольной цепи (в дежурном режиме сопротивление контрольного резистора, включенного последовательно с любым из выводов «сухой» контактной группы выходного реле БПРМ).

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

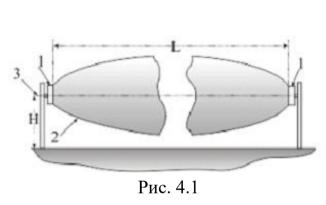
- 3.1 Извещатель обеспечивает непрерывную круглосуточную работу.
- 3.2 Извещатель обеспечивает создание объемной 3О протяженностью от 2 м до 60 м. Протяженность 3О определяется как расстояние между передающим и примным блоками (от минимального до максимального). Однако при приближении

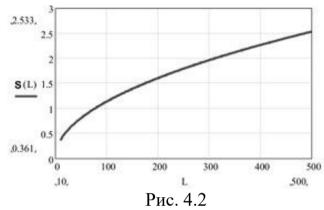
оси ЗО к заграждению до 0,25 м (для вертикальной ориентации блоков), протяженность ЗО может уменьшиться до 2 раз от максимального значения.

- 3.3 Извещатель обеспечивает формирование, с вероятностью не менее 0,99, сигнала ТРЕВОГА и соответствующую индикацию на контрольной панели БПРМ:
- при перемещении в зоне обнаружения нарушителей, движущихся в положениях «в рост», «согнувшись», «на корточках» или «на четвереньках» со скоростью от 0,1 до 10 м/с;
 - при попытке доступа к органам управления и индикации БПРМ;
- при отключении напряжения питания (формирование непрерывного сигнала ТРЕВОГА без контрольной индикации);
 - при снижении напряжения питания извещателя ниже 9 В.
 - 3.4 Период наработки на ложное срабатывание составляет не менее 1000 ч.
 - 3.5 Извещатель обеспечивает работоспособность в условиях:
- а) умеренного и холодного климата, исполнение УХЛ категории 1...4 по ГОСТ 15150-69, но при температуре от минус 50 до плюс 50° C (при предельных температурах от 60° C до + 85° C);
- б) арктики (модификация «А»), исполнение ХЛ категории 1...4 по ГОСТ 15150-69, но при температуре от минус 65 до плюс 50° С (при предельных температурах от 70° С до $+85^{\circ}$ С).
 - 3.6 Извещатель обеспечивает работоспособность при:
- скорости ветра до 40 м/с;
- воздействии осадков в виде дождя до 40 мм/час или снега до 40 мм/час;
- воздействии солнечной радиации;
- высоте неровностей не более \pm 0,3 м на отрезке контролируемого участка в местах примыкания ЧЗ к поверхности земли;
- высоте снежного покрова определяемой для вертикальной ориентации блоков вычетом 0,2 м из высоты установки блоков БПРД и БПРМ извещателя, например, высота снежного покрова может достигать 0,6 м, при высоте установки блоков 0,8 м или 0,8 при высоте установки 1,0 м и т. д.;
- высоте травяного покрова определяемой для вертикальной ориентации блоков вычетом 0,5 м из высоты установки блоков БПРД и БПРМ извещателя, например, высота травяного покрова может достигать 0,3 м, при высоте установки блоков 0,8 м или 0,5 м при высоте установки 1,0 м;
- перемещении в 3О мелких предметов или животных с размерами не более 0,2 м.;
- воздействии УКВ излучения в диапазоне 150-175 МГц мощностью до 50 Вт на расстоянии не менее 5 м;
- проезде вне ЧЗ транспортных средств;
- воздействии электромагнитных помех по ГОСТ Р 50009-2000 (импульсов напряжения в цепях питания, электростатических разрядов и др.).
- 3.7 Электропитание блоков извещателя осуществляется от источников постоянного тока со значением напряжения в пределах от 10 В до 36 В.
- 3.8 Среднее значение постоянного тока, потребляемого извещателем в дежурном режиме по цепи питания с номинальным напряжением 24 В, не превышает 20 мА. Максимальный ток, потребляемый извещателем по цепи постоянного тока, не превышает 40 мА, а максимальная мощность не превышает 0,5 Вт. Для модификации «А» ток потребления при отрицательных температурах не превышает 250 мА.

- 3.9 Извещатель обеспечивает выдачу в контрольную цепь сигнала ТРЕВОГА продолжительностью 5⁺¹ сек. Сигнал ТРЕВОГА формируется путем изменения величины сопротивления выходной контрольной цепи от значения менее 35 Ом до значения более 1000 кОм (размыканием «сухой» контактной группы выходного реле). При измерении величины сопротивления выходной контрольной цепи, напряжение не должно превышать 39 В, а ток должен ограничиваться на уровне не более 100 мА. На тыльных стенках БПРМ и БПРД имеется светодиод, позволяющий наблюдать основные сигналы извещателя.
- 3.10 Извещатель имеет возможность выбора одной из четырех частотных литер работы БПРМ и БПРД.
- 3.11 Извещатель имеет встроенную одноуровневую защиту от наведенного напряжения во всех внешних цепях протяженностью до 250 м, подключенных к зажимам БПРМ, во время грозовых или других электрических разрядов. Защита входных цепей включается при превышении входных напряжений значения ~39...40 В. Несмотря на это, при длине присоединенных к зажимам БПРМ линий свыше 100 м необходимо установить в распредкоробках устройства грозозащиты или использовать распредкоробки КС, КСУМ с встроенной грозозащитой.
- 3.12 Извещатель имеет возможность контроля работоспособности блока БПРД по встроенному светодиоду.
- 3.13 Габаритные размеры корпусов блоков БПРМ, БПРД извещателя без элементов для крепления $\varnothing 130 \times 52$ мм, с элементами для крепления $188 \times 130 \times 52$ мм
 - 3.14 Масса блоков БПРМ и БПРД, не более 0,7 кг
 - 3.15 Срок службы блоков извещателя не менее 10 лет.
 - 3.16 Извещатель не содержит драгметаллов.
 - 3.17 Извещатель устойчиво работает вблизи ЛЭП до 500кВ.
 - 3.18 Повышенная стойкость извещателя к воздействию влаги и пыли:
- применение коррозионностойких материалов, устойчивых к воздействию атмосферной коррозии, метизы (болты, винты, гайки, шайбы) извещателей изготовлены из нержавеющей стали.
- 3.19 В модификации «А» применены материалы и электронные компоненты с расширенными диапазонами рабочих температур и производится подогрев внутри блоков, обеспечивающие повышенную стойкость изделий к критическим температурным воздействиям; корпуса извещателей изготовлены из нержавеющей стали с теплоизоляционным внутренним покрытием; применены усиленные защитные покрытия и дополнительное лаковое защитное покрытие электронных компонентов и модулей специальными компаундами.

4. УКАЗАНИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ


Извещатель может размещаться на открытой местности, непосредственно на заграждении, по верху заграждения, на стене здания, крыше или в помещении. В прямой видимости БПРМ и БПРД извещателя не должно быть посторонних предметов.


4.1 Формирование 3О на открытой местности

- 4.1.1 ЗО на открытой местности можно сформировать:
- а) широкую («классическую») 3О, для чего блоки БПРМ и БПРД должны быть одинаково сориентированы под углом 45° относительно поверхности земли, что соответствует вертикальной или горизонтальной ориентации вектора поляризации

антенн , в зависимости от направления наклона;

- б) узкую 3О, для чего блоки БПРМ и БПРД должны быть одинаково сориентированы вертикально относительно поверхности земли, что соответствует наклоненной под углом 45° ориентации вектора поляризации антенн�, при этом ширина 3О будет увеличиваться при уменьшении высоты установки БПРД и БПРМ относительно земли или снежного покрова.
- 4.1.2 Для «классической» ЗО БПРД и БПРМ «1» (см. рис 4.1) располагаются на выбранной высоте от поверхности земли навстречу друг другу таким, образом, чтобы ЧЗ блокировала контролируемый участок. ЧЗ «2» имеет форму усеченного поверхностями земли эллипсоида вращения с большой осью, совпадающей с условной линией «3», соединяющей центры БПРМ и БПРД «1», установленных на высоте «Н» от поверхности земли, на расстоянии «L» друг от друга.
- 4.1.3 Максимальная ширина «2S» ЧЗ на открытом участке зависит от расстояния между БПРД и БПРМ, определяется как $2 \times S(L)$ по ориентировочному графику (см. рис. 4.2) при L равном расстоянию между БПРД и БПРМ. Ширина ЧЗ на конкретном отрезке определяется по тому же графику, но при L равном удвоенному расстоянию до ближайшего блока. На графике обозначено: L —расстояние между БПРД и БПРМ.

Примечания: 1) ширина ЧЗ увеличивается к середине и уменьшается при приближении к блокам; 2) Все размеры по умолчанию приводятся в метрах.

- 4.1.4 При выборе высоты установки необходимо учесть, что при приближении к БПРД (БПРМ) вдоль оси, ЧЗ «сужается» как показано на рис. 4.2. БПРД и БПРМ размещаются на выбранной высоте (для приземного варианта размещения рекомендуется 0,5...1,4 м) от поверхности земли.
- 4.1.5 При выборе высоты установки необходимо учесть, что, при приближении к БПРД (БПРМ) вдоль оси, ЗО может «отрываться» от земли. При нулевом расстоянии от указанных блоков сечение ЗО совпадает с размерами блоков.
- 4.1.6 При наклонной ориентации блоков, 3О «2» (рис. 4.1) имеет форму, усеченного поверхностью земли, эллипсоида вращения. При приближении к БПРД (БПРМ) ЗО «отрывается» от земли и, при необходимости обнаружения низко движущегося («на корточках») нарушителя, необходимо прикрыть образовавшиеся «проходы» с помощью смежных 3О, как пока-

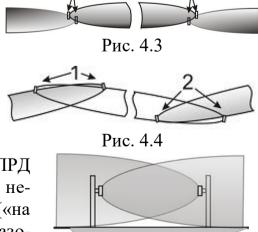


Рис. 4.5

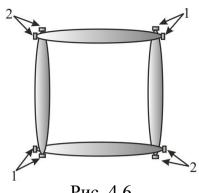


Рис. 4.6

зано на рис. 4.3, 4.4 (вид сверху) и 4.5 (вид сбоку), либо с помощью физических преград.

- 4.1.7 Длина блокируемого извещателем участка должна быть не более 60 м и не менее 2 м.
- 4.1.8 Для исключения взаимовлияния соседних или смежных извещателей необходимо включить разные частотные литеры.
- 4.1.9 При установке на рубеже последовательно нескольких извещателей необходимо обеспечить перекры-

тие 3О для исключения пропусков. На рисунках 4.3, 4.4, 4.5, 4.6 показаны варианты пространственной развязки, цифрами «1» и «2» условно обозначены БПРД и БПРМ, соответственно. Исключение взаимовлияния смежных извещателей обеспечить разными частотными литерами извещателей, а исключение эффекта экранирования блоками друг друга обеспечить пространственным поперечным сдвигом осей их 3О.

4.2 Формирование 3О вблизи заграждения

4.2.1 При установке вблизи заграждения, стены здания, крыши или другой поверхности или сооружения необходимо сориентировать БПРМ и БПРД вертикально, что соответствует углу наклона вектора поляризации антенн близкому к 45° к поверхности заграждения, земли и т. п. (рис. 4.7).

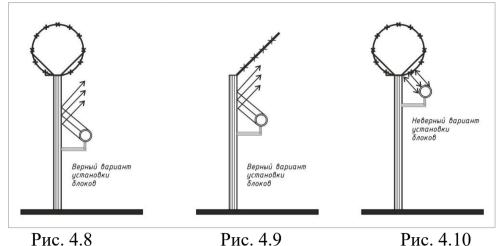


Рис. 4.7

- 4.2.2 При приближении к заграждению оси 3О расширяется, при удалении – сужается, заграждение участвует в формировании 3О, фактически являясь рефлектором.
- 4.2.3 При приближении оси 3О даже вплотную к радиопрозрачному заграждению, например к сетке ССЦП, за заграждением 3О практически отсутствует, а колебания заграждения никак не сказываются на работе извещателя.
- 4.2.4 При приближении БПРМ и БПРД к заграждению длина 3О уменьшается, например приближение менее 20 см уменьшает длину почти в два раза (Призма-3-10/60 <60 м). Расстояние от оси 3О до заграждения можно изменять, применяя телескопические кронштейны КВЗ-3/0,5Т,

обеспечивающие выбор расстояния от оси 3О до заграждения 0,1...0,5 м или КВЗ-**2Т** - 0,5... 1м, или выбрать **КВЗ-3/0,2** (**0,3; 0,4; 0,5**), где 0,2; 0,3; 0,4; 0,5 – фиксированная длина кронштейна в м.

4.2.5 При установке блоков извещателей на заграждении, по верху которого размещены барьеры безопасности в виде колючей проволоки (ленты), либо армированной скрученной колючей ленты (АСКЛ), необходимо определить оптимальную высоту установки блоков. Элементы колючей проволоки создают отражения, которые оказывают влияние на формирование 3О и увеличивают количество ложных срабатываний извещателя. На рис. 4.8 и 4.9 показаны правильные варианты установки блоков вблизи АСКЛ. Отраженный от вертикальной плоскости заграждения сигнал с наклонной поляризацией не попадает в БПРМ и не приводит к ложным срабатываниям. На рис. 4.10 показан неверный вариант установки БПРМ и БПРД извещателя. Сигнал, отраженный от АСКЛ, попадает в БПРМ, что может приводить к ложным срабатываниям. Отраженный от АСКЛ сигнал с наклонной поляризацией попадает в БПРМ с той же поляризацией, что может приводить к ложным срабатываниям извещателя.

5. КОМПЛЕКТ ПОСТАВКИ

5.1 Комплект поставки извещателя приведен в таблице.

Наименование	Кол-во
Блок передающий (БПРД)	1 шт.
Блок приемный (БПРМ)	1 шт.
Узел крепления блоков KB3-3/0,2 (или KB3-3/0*)	2 шт.
Контрольный магнит	1 шт.
Паспорт	1 шт.
Руководство по монтажу и эксплуатации	1 шт. на 10 комп.

Руководство можно скачать по QR-коду на упаковке, на обложке паспорта или на сайте <u>www.tso-perimetr.ru</u> в соответствующем разделе «Поддержка».

Примечание. Встроенные в БПРД и БПРМ извещателя кабели имеют длину 1м, по дополнительному заказу могут быть встроены кабели другой длины.

При заказе, КВЗ-3/0,2 (Рис. 5.1) - для крепления на стену или заграждение, можно заменить на переходной КВЗ-3/0 (Рис. 5.2) - для установки на любые стойки и узлы крепления производства ГК «Омега-микродизайн».

Рис. 5.1 Рис. 5.2

- 5.2 По отдельному заказу комплект поставки извещателя может дополняться узлами крепления, кронштейнами, стойками и монтажными коробками:
- 1) **КВЗ-3/0,3**, **КВЗ-3/0,4** или **КВЗ-3/0,5** (длина кронштейна 300; 400; 500мм обеспечивает выбор расстояния от оси 3О до заграждения)-для крепления БПРД (БПРМ) на заграждениях (стенах) и т. п.;
- 2) **КВЗ-3/0** (рис 5.2) переходной кронштейн для крепления блоков на стойках (СТ-2, СТ-3) и узлах крепления (УЗК-2/150, УЗК-2/500, КВЗ-1/0, КВЗ-2Т, УК-СТ1, УК-СТ3);
- 3) **КВ3-3/0,5Т** (рис. 5.3) -телескопический кронштейн, обеспечивающий выбор расстояния от оси 3О до заграждения 0,1...0,5м;
- 4) **КВЗ-2Т** (рис.5.4)—телескопический кронштейн, обеспечивающий выбор расстояния от оси ЗО до заграждения 0,5... 1м;
- 5) **КВЗ-1/0** (рис.5.5), **КВЗ-1/0,3**, **КВЗ-1/0,5** (рис.5.6, где 0; 0,3; 0,5—

Рис. 5.4

Рис. 5.5

размеры вертикального плеча в м) - кронштейны для крепления блоков вдоль заграждений или стен зданий;

6) **УЗК-2/150** (**УЗК-2/500**) (рис.5.7) –для крепления блоков на Рис. 5.6

Рис. 5.7

8) **КС-1** и **КС-2** (рис.5.8) – для подключения одного (двух) БПРД (БПРМ);

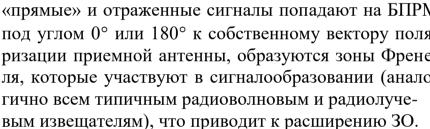
9) Стойка СТ-1 со встроенной коробкой для подключения БПРД (БПРМ);

Рис. 5.8

10) Стойка СТ1-а для крепления БПРД (БПРМ);

11) Стойка СТ-2 телескопическая для крепления БПРД (БПРМ);

столбе \emptyset 70...150 мм (\emptyset 100...500 мм);


- 12) Стойка СТ-3 прямоугольного сечения для крепления БПРД (БПРМ)
- *Примечания: 1) Размер опор для крепления стоек выбирается с учетом необходимого заглубления опор в грунт в зависимости от его свойств;
- 2) Информацию по стойкам см. в разделе 10.3 и на сайте www.tso-perimetr.ru.

6.1 Принцип работы

6.1.1 Работа на открытой местности

6.1.1.1 При наклоне БПРМ и БПРД под углом 45° относительно поверхности Вектор поляризации

земли (рис. 6.1), что соответствует вертикальной или горизонтальной ориентации вектора поляризации антенн (в зависимости от направления поворота), на БПРМ суммируются сигналы как прямые от БПРД, так и отраженные нарушителем. Ввиду того, что «прямые» и отраженные сигналы попадают на БПРМ под углом 0° или 180° к собственному вектору поляризации приемной антенны, образуются зоны Френеля, которые участвуют в сигналообразовании (аналогично всем типичным радиоволновым и радиолуче-

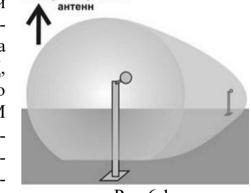


Рис.6.1

6.1.1.2 Установка БПРМ и БПРД вертикально относительно поверхности земли (рис. 6.2) соответствует наклонной ориентации вектора поляризации антенн. Принцип работы извещателя с наклонной ориентацией вектора поляризации запатентован («Радиоволновой способ обнаружения объектов», Патент РФ №2348980). Плоско поляризованное электромагнитное поле (чувствительная зона) формируется между БПРД и БПРМ в виде вытянутого эллипсоида вращения,

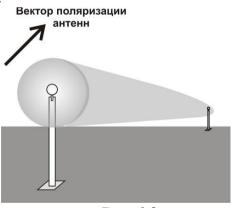


Рис.6.2

причем вектор поляризации AB формируется под углом $\approx 45^{\circ}$ по отношению к прилегающим поверхностям (земле, заграждению и др., рис. 6.3). Отраженные от поверхностей волны (вектор А2В2) попадают на приемную антенну ПРМ под углом $\approx 90^{\circ}$ по отношению к ее собственному вектору поляризации **AB**. В результате вклад отраженного сигнала в суммарный сигнал на выходе приемной антенны ПРМ ничтожно мал. В отсутствии в 3О заграждения или других посторонних отражающих предметов, на БПРМ попадают только прямые от БПРД сигналы, а отраженные нарушителем сигналы поступают на БПРМ с вектором поляризации

перпендикулярным собственному вектору поляризации приемной антенны и «невидимы» для БПРМ. Зоны Френеля не образуются и не участвуют в сигналообразовании, что приводит к значительному сужению 30. Приближение блоков к поверхности земли или приближение к блокам снежного покрова приводит к появлению дополнительных отражений и расширению 30, аналогично приближению к заграждению.

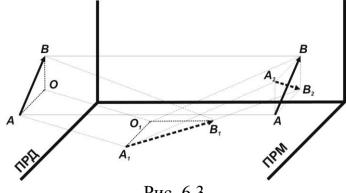


Рис. 6.3

6.1.2 Работа вблизи заграждения

- 6.1.2.1 При установке вблизи заграждения, стены здания или другой поверхности или сооружения необходимо сориентировать БПРМ и БПРД только вертикально, что соответствует углу наклона вектора поляризации антенн под углом 45° к прилежащей поверхности (рис. 6.4).
- 6.1.2.2 Ввиду того, что сигнал, излученный БПРД и отраженный от заграждения или нарушителя невидим для БПРМ, 3О формируется другим образом. Для того чтобы «стать видимым» сигнал от БПРД должен отразиться от объектов четное число раз. Чем ближе ось ЧЗ (линия межу центрами БПРД и БПРМ) к отражающей поверхности, например к заграждению или стене, а также к другому отражающему

Предмету или конструкции, тем «сильней» отраженный сигнал, тем шире будет 30. К тому же, отражающая поверхность не идеально гладкая, что приводит к некоторому угловому рассеянию, 30 как бы выравнивается в сечении, «отходя» по форме от эллипсоида вращения и приближаясь к овалу с расходящимися по мере приближения к заграждению центрами (скругленному параллелепипеду).

6.1.2.3 При приближении оси ЧЗ к радиопрозрачному заграждению все объекты (движимые и недвижимые), расположенные на сопредельной территории (за заграждением) «невидимы» для извещателя, т. к. сигналы попадают в

Рис. 6.4

- БПРМ, отраженными один раз (нечетное отражение). Поэтому создается эффект «экранирования» радиопрозрачным заграждением (3O обрезается заграждением).
- 6.1.2.4 При пересечении 3О нарушителем происходит изменение параметров поля и принимается решение о выдаче тревожного сообщения.

6.2 Структурная схема

6.2.1 Управляемый генератор 1 (см. рис. 6.5) вырабатывает импульсную последовательность определенной скважности. Под действием импульсов с генератора 1, модулятор 2 формирует последовательность СВЧ-радиоимпульсов, которые поступают на передающую антенну 3. Передающая антенна 3 излучает СВЧ-радиоимпульсы в направлении приемной антенны 4. Образовавшееся между передающей 3 и приемной 4 антеннами электромагнитное поле является источником полезных сигналов для обнаружения объектов, пересекающих данное электромаг-

нитное поле. С выхода приемной антенны СВЧ-радиоимпульсы ступают на вход детектора 5 и далее на усилитель 6, с первого выхода которого сигнал поступает на вход компаратора 7, информирующего узел управления 8 о наличии на

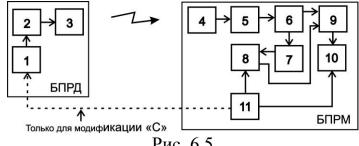


Рис. 6.5

выходе усилителя 6 импульсов. Под управлением элемента 11, ключ 9 пропускает импульсы в узел принятия решений 10, который управляет выходным оптореле. В модификации «С» генератор 1 синхронизируется по выделенным проводам под управлением элемента 11.

6.3 Описание конструкции блоков

6.3.1 Общие сведения

Блок передающий (БПРД) и блок приемный (БПРМ) имеют идентичное конструктивное исполнение (рис. 6.6). Степень защиты корпусов блоков - IP67. Кожуха извещателя изготовлены из нержавеющей стали. Внутри корпуса установлен субблок, включающий антенну, и модуль на основе печатной платы. В извещателях модификации «А» установлено устройство обогрева. Устройство обогрева включается автоматически при снижении температуры окружающей среды ниже - 20°C и отключается автоматически при повышении температуры окружающей среды выше - 20°С. Кабель для внешних соединений и подключений выведен из нижней части корпуса. В нижней торцевой части корпуса также размещен шар-

Рис. 6.6

нирный стержень для крепления в юстировочном механизме. Юстировочный механизм входит в состав кронштейнов КВЗ-3/0,2 (0,3; 0,4; 0,5; 0,5Т, рис. 6.6) для крепления на заграждения и стены, и в состав переходного КВЗ-3/0 (рис.6.7) для крепления на все виды УЗК, кронштейнов и стоек, выпускаемых ГК «Омега -

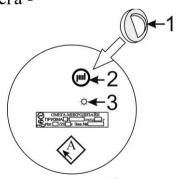


Рис. 6.7

Рис. 6.8

блока БПРМ (БПРД) на микродизайн». Для установки кронштейне КВЗ-3/0 (0,2; 0,3; 0,4; 0,5; 0,5Т) необходимо на выкрутить зажимной болт на наконечнике до освобождения места под шарнирный стержень, затем установить в его паз шарнирный стержень и затянуть болт до жёсткого закрепления шара стержня в пазе. Имеется возможность визуального контроля работоспособности БПРД с помощью встроенного светодиодного индикатора 3 и прилагаемого в комплекте поставки извещателя магнита 1(см. рис. 6.8). На тыльной

стенке кожуха нанесено наименование блока и заводской номер. На тыльной стенке БПРМ расположен двухцветный индикатор для визуального контроля работы извещателя. Ромб (квадрат) обозначенный «А» на тыльных стенках БПРМ и БПРД указывает на ориентацию антенны в блоке и соответственно на ее поляризацию (\square - вертикальная или горизонтальная, \diamondsuit наклонная ~ 45°).

Графическое изображение ромба (квадрата) обозначенное «А» на тыльных стенках БПРМ и БПРД указывает на положение Антенны в блоке, а стрелка внутри квадрата - на направление вектора поляризации антенны (вертикальное, горизонтальное или наклонное 0...180°, в зависимости от наклона блока (45° при вертикальной ориентации блока)). Направление стрелки позволяет визуально определить правильность установки блоков БПРД и БПРМ извещателя, относительно друг друга, направления стрелок должны совпадать. Ввиду симметрии ЭМ-поля извещателя, не имеет значение направление стрелки (на препятствие или от него), главное, чтобы стрелки БПРД и БПРМ совпадали и были ориентированы под 45° к плоскости прилегающего заграждения, столбам и другим препятствиям, попадающим в ЧЗ извещателя.

6.3.2 Органы управления и индикации

- 6.3.2.1 На тыльной стенке кожуха БПРД имеется окно встроенного светодиода 3 для визуального контроля, для чего к фирменному значку 2 на тыльной стороне БПРД необходимо приложить и удерживать во время контроля магнит 1 (см. рис.6.8). В случае нормальной работы БПРД, светодиод мигает с периодом около 1 сек. На тыльной поверхности конструкция БПРМ расположен двухцветный индикатор. В дежурном режиме индикатор не светится, в случае прохождения Тревоги мигает 8 раз.
- 6.3.2.2 В извещателе реализована синхронизация по радиолучу, когда БПРД излучает «рабочие» радиоимпульсы, а БПРМ «захватывает» и отслеживает их во временном «окне». В извещателе для модификации «С» реализованы два вида синхронизации работы БПРМ и БПРД:
 - 1) синхронизация по радиолучу;
- 2) синхронизация по выделенным проводам, тогда БПРМ формирует синхроимпульсы, передаваемые на БПРД по выделенным проводам, тем самым определяет моменты излучения (рабочих) радиоимпульсов БПРД. Выбор вида синхронизации осуществляется соответствующим подключением **коричневого** провода кабеля БПРМ извещателя (табл.6.1).

Таблица 6.1

No	Наименование	Подключение коричневого провода БПРД и БПРМ
1	Синхронизация по р-лучу	- Uпит
2	Синхронизация по проводу	+Uпит

^{*}или не подключен

6.3.2.3 В извещателе реализованы четыре частотные литеры работы БПРМ и БПРД (табл.6.2).

Таблица 6.2

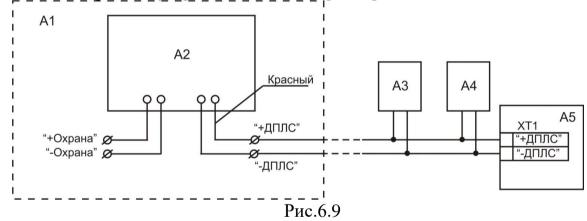
Номер частотной литеры	Подключение проводов БПРД и БПРМ	
	Синий провод	Белый провод синей пары
0 (00)	- Uпит *	- Uпит *
1 (01)	- Uпит *	+ Ипит
2 (10)	+ Ипит	- Uпит *
3 (11)	+ Ипит	+ Ипит

6.3.3 Режимы работы извещателя

6.3.3.1 **ЧУВСТВИТЕЛЬНОСТЬ** извещателя можно выбрать согласно табл. 6.3.

Hyp of party at the office	Подключение пр	ооводов коричневой пары БПРМ
Чувствительность	коричневый провод	белый провод коричневой пары
низкая	- Uпит *	- Uпит *
средняя	- Uпит *	+ Ипит
повышенная	+ Ипит	- Uпит *
высокая	+ Ипит	+ Ипит

Для модификации «С» **ЧУВСТВИТЕЛЬНОСТЬ** извещателя можно выбрать согласно табл. 6.4.


Таблица 6.4

Наименование	Подключение белого провода коричневой пары
Пониженная чувствительность	-Ипит
Повышенная чувствительность	+Uпит

- 6.3.3.2 <u>ДЕЖУРНЫЙ</u> режим, при котором выходное реле извещателя замкнуто и осуществляется контроль 3O (охрана рубежа).
- 6.3.3.3 <u>TPEBOГА</u> режим, при котором выходное реле извещателя разомкнуто и прерывисто светится красный индикатор, сигнализируя о нарушении рубежа.

6.3.4 Подключения извещателя «Призма» к ППК

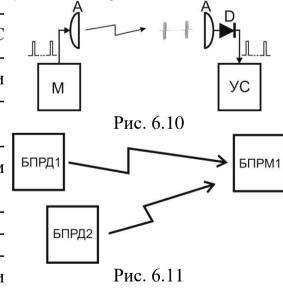
6.3.4.1 Подключение извещателя Призма к ППК следует производить по рис. 6.9., где А1-извещатель Призма; А2- «С2000-АР1»; КЦ «Охрана» нормально замкнутая; А3, А4-адресные устройства; А5-контроллер «С2000-КДЛ».

- 6.3.4.2 AP1 обеспечивает хранение адреса обмена по ДПЛС в энергонезависимой памяти. Заводской адрес AP1 127. Для задания адреса необходимо с пульта или персонального компьютера послать одну из команд для «С2000-КДЛ»:
 - «Программирование адреса устройства»;
 - «Смена адреса устройства».

Командой «Программирование адреса устройства» можно задать адрес AP1 независимо от того, какой ему адрес присвоен на данный момент. Это может быть использовано в случае ошибочного назначения одинаковых адресов двум и более устройствам. Для этого с пульта или компьютера подать команду на программирование требуемого адреса. После чего в течение не более 5 минут отключить КЦ «Охрана» от извещателя и замкнуть между собой выводы «+Охрана». При этом на пульте или компьютере отобразятся события о потере A1 — неадресный извещатель; A2 — «C2000-AP1»; КЦ «Охрана» нормально замкнутая нормально замкнутая А3, А4 — адресные устройства; А5 — контроллер «C2000-КДЛ». связи с устройст-

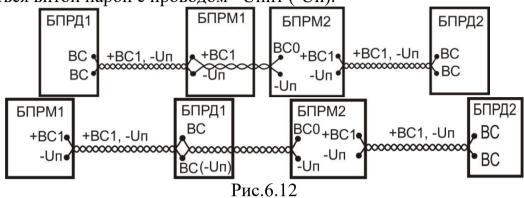
вом по старому адресу и о восстановлении с устройством по новому адресу. Если устройства имели одинаковый адрес, то сообщений о потере связи по старому адресу не будет.

Если же необходимо сменить адрес у AP1 с заранее известным адресом, то для этого надо воспользоваться командой «Смена адреса устройства». Для этого с пульта или компьютера послать команду на смену адреса с указанием старого и нового адреса. При этом на пульте или компьютере отобразятся события о потере связи с устройством по старому адресу и восстановлении связи с устройством по заданному адресу.


- 6.3.4.3 Испытания
- 6.3.4.3.1 С помощью пульта или персонального компьютера взять на охрану извещатель с номером, соответствующим адресу (с типом входа 5), на который запрограммирован AP1.
- 6.3.4.3.2 Произвести имитацию срабатывания извещателя (разомкнуть КЦ «Охрана»). При этом зафиксировать появление сообщения «Тревога проникновения» по адресу, запрограммированному в AP1. Перевести извещатель в состояние «Норма». С помощью пульта или компьютера отключить AP1 с номером, соответствующим адресу, на который запрограммирован AP1.

6.3.5 Синхронизация блоков

- 6.3.5.1 В извещателе применено импульсное управление активным состоянием, в котором БПРД излучает в направлении БПРМ радиоимпульсы. Большую часть времени извещатель находится в пассивном состоянии, во время которого производится обработка сигналов и принятие решений. Помехоустойчивость достигается за счет максимальной скважности активного состояния. Синхронизация блоков позволяет согласованно формировать и анализировать радиоимпульсы.
- 6.3.5.2 Антенна А БПРД, под управлением модулятора М, излучает в направлении антенны А БПРМ радиоимпульсы (см. рис. 6.10). Радиоимпульсы с выхода ан-


тенны А (БПРМ) поступают на детектор D, с выхода которого – на узел синхронизации УС. УС определяет их положение во времени и пропускает в узкие «временные ворота» для обработки и принятия решений. Идентификация «собственного» БПРД1 (рис.6.11) при «засветке чужим», рядом установленным, БПРД2 достигается выбором разных частотных литер БПРД1 и БПРД2, см п. 6.3.2.2.

6.3.5.3 Узел синхронизации УС распознает частотную литеру «собственного» БПРД. В модификации «С», при проводной синхронизации, производится «прямое» управление модулятором М и распознавание в УС выключается.

- 6.3.5.4 При возможной засветке смежными или другими БПРД в извещателях обязательно включить разные частотные литеры, см. табл. 6.1.
- 6.3.6.5 Для значительного снижения влияния внешних радиопомех любого происхождения необходимо включить проводную синхронизацию БПРМ и БПРД, для чего провода +BC1 и –Uпит (-Uп) БПРМ соединить витой парой с проводами ВС

собственного БПРД без соблюдения полярности. При проводной синхронизации и при возможной засветке смежными или соседними радиоволновыми извещателями ПРИЗМА (о чем свидетельствует частые «ложные» тревоги), необходимо включить взаимную синхронизацию данных извещателей. При этом активный выход +ВС1 (БПРМ1или при его трансляции через БПРД1) ведущего извещателя подключается к входу (+ВС0) ведомого извещателя (БПРМ2), в зависимости от расположения БПРМ2 (вблизи смежного БПРД1 или БПРМ1, см. рис. 6.12), т. е. на любом конце активного провода (+ВС1) синхронизации. Подключение должно также проводиться витой парой с проводом – Uпит (-Uп).

6.3.6 Кабели (жгуты) подключения блоков

6.3.6.1 <u>Кабель БПРМ</u> подключается к внешним устройствам (КС..., КСУМ1 или др.) с помощью встроенного восьмижильного (десятижильного для модификации «С») кабеля в экранирующей оболочке. Кабель имеет четыре (пять для модификации «С») витые пары. Назначение жил кабеля приведено в табл. 6.5 (в табл. 6.6 для модификации «С»). Назначение проводов определяется по цвету скрученных пар.

Таблица 6.5

Цвет пары	Цвет провода	Назначение
Оранжевый	оранжевый	+Uпит
Оранжевыи	белый	- Uпит
Синий	синий	Vunan danna nagratin ing durangan
Синии	белый	Управление частотными литерами
Коричневый	коричневый	Управление порогами срабатывания
Коричневыи	белый	у правление порогами срабатывания
2040444	зеленый	+ДПЛС
Зеленый	белый	-ДПЛС

Таблица 6.6

Цвет пары	Цвет провода	Назначение
Opovincopy vž	оранжевый	+Uпит
Оранжевый	белый	ВС0-Вход внешней синхронизации
Синий	синий	V
Синии	белый	Управление частотными литерами
Коричневый	коричневый	Выбор вида синхронизации «по радиолучу»/по выделен- ным проводам
	белый	Управление порогами срабатывания
2	зеленый	+ДПЛС
Зеленый	белый	-ДПЛС
Серый	серый	+ВС1-Выход проводной синхронизации
	белый	- Uпит

6.3.6.2 <u>Кабель БПРД</u> подключается к внешним устройствам (КС... и др.) с помощью встроенного четырехжильного (восьмижильного для модификации «С») кабеля в экранирующей оболочке. Кабель имеет две (четыре) витые пары. Назначение жил кабеля приведено в табл. 6.7 (в табл. 6.8 для модификации «С»).

Таблица 6.7

Цвет пары	Цвет провода	Назначение
Onavvvonv vii	оранжевый	+ Ипит
Оранжевый	белый	- Uпит
C	синий	Vynan vayya yaararyy yyy yyyanayy
Синий	белый	Управление частотными литерами

Таблица 6.8

Цвет пары	Цвет провода	Назначение
Оранжевый	оранжевый белый	+ U пит - U пит
Синий	синий белый	Управление частотными литерами
Коричневый	коричневый	Выбор вида синхронизации «по радиолучу»/по выделен- ным проводам
Зеленый	белый зеленый белый	Входы проводной синхронизации

6.3.6.3 Схема подключеия проводов при подключении проводной синхронизации для двух комплектов извещателей модификации «С» см. на рис. 6.13, схема аналогична верхней схеме, приведенной на рис 6.12.

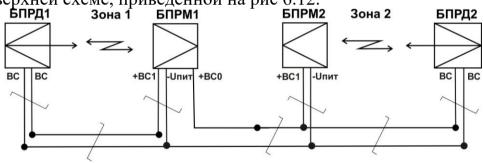


Рис.6.13

7. МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

7.1 На блоках извещателя нанесены:

товарный знак завода-изготовителя; шифр изделия; заводской номер, квартал и год выпуска.

8. ТАРА И УПАКОВКА

8.1 Транспортная тара имеет манипуляционные знаки:

ОСТОРОЖНО, ХРУПКОЕ, БОИТСЯ СЫРОСТИ, ВЕРХ, НЕ КАНТОВАТЬ.

8.2 На транспортной таре имеется клеймо ОТК завода-изготовителя.

9.МЕРЫ БЕЗОПАСНОСТИ

9.1 Извещатель должен устанавливаться и обслуживаться персоналом, имеющим твердые практические навыки в его эксплуатации, и допущенным к работе с электроустановками напряжением до 1000 В.

Необходимо строго соблюдать правила техники безопасности при проведении монтажных работ. Пространства вне помещений и помещения с прово-

дящими полами относятся к категории особо опасных, и никакая «двойная» изоляция инструментов не обеспечивает безопасного проведения работ!!!

- 9.2 Нарушение требований данной инструкции может привести к преждевременному выходу извещателя из строя.
- 9.3 Категорически запрещается на провода встроенных в БПРМ и БПРД кабелей подавать напряжение свыше 36 В.
- 9.4 При подключении к БПРД и БПРМ линий (проводов и кабелей) протяженностью более 100 м необходимо устанавливать дополнительную грозозащиту, обеспечивающую нейтрализацию зарядов наведенных во время грозы или других электрических разрядов или использовать распредкоробки КС, КСУМ.

10. ПОРЯДОК УСТАНОВКИ

10.1 Требования к подготовке участка и размещению извещателя

- 10.1.1 Участок между БПРД и БПРМ изделия должен удовлетворять следующим требованиям:
- а) поверхность участка должна быть выровнена с точностью ± 0.3 м на отрезке рубежа, где зона обнаружения соприкасается с поверхностью земли. При больших положительных отклонениях верхние кромки препятствий могут образовывать достаточно мощные вторичные источники радиоволн или вообще экранировать БПРМ от БПРД (в отсутствии прямой видимости). При наличии ослабленного сигнала, соответственно уменьшается соотношение сигнал/помеха, что может приводить к снижению периода ложных тревог. На рис. 10.1 показан случай, когда высота препятствия достигает высоты условной осевой линии, проведенной через

центры БПРД и БПРМ. Видно, как искажается зона обнаружения и образуются возможности для ее бесконтрольного пересечения в положении «согнувшись», а любые

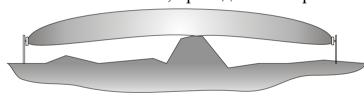


Рис. 10.1

изменения на верхней кромке (поверхности) препятствия сильно изменяют амплитуду полезного сигнала и снижают соотношение сигнал/ помеха;

- б) в чувствительной зоне (см. рис.4.1) не должно быть колеблющихся под действием метеофакторов предметов (кустов и др. растительности, выше 0,5м, ветвей деревьев, распашных калиток и ворот);
- в) высота травяного покрова определяется вычетом 0,5 м из высоты установки блоков извещателя. Например, высота травяного покрова может достигать 0,3 м, при высоте установки блоков 0,8 м или 0,5 при высоте установки 1,0 м и т. д.;
- г) высота снежного покрова определяется вычетом 0,2 м из высоты установки блоков БПРД и БПРМ извещателя. Например, высота снежного покрова может достигать 0,5 м, при высоте установки блоков 0,8 м или 0,8 м при высоте установки 1,0 м и т.д.
 - 10.1.2 Определить положения блоков и предполагаемую форму 3О.
- 10.1.3 Выбрать место и способ крепления блоков, соответствующие узлы крепления и другие вспомогательные кронштейны, и материалы.

Примечание. Кабели БПРМ (БПРД) имеют «уличное» исполнение и не требуют никакой защиты кроме защиты от механических повреждений.

10.2 Установка вблизи заграждений и стен

10.2.1 При установке вблизи заграждения, стены здания, крыши или другой по-ГРУППА КОМПАНИЙ «ОМЕГА-МИКРОЛИЗАЙН»

верхности или сооружения необходимо сориентировать БПРМ и БПРД вертикально (параллельно или перпендикулярно поверхности), что соответствует углу наклона вектора поляризации антенн под углом 45° к прилежащей поверхности.

- 10.2.2 Возможны два варианта крепления блоков: а) блоки устанавливаются непосредственно на поверхность заграждения (стены) в соответствии с п. 10.2; б) один из блоков устанавливается непосредственно на поверхность заграждения (стены) (п.10.3), а другой на стойку или опору (блоки устанавливаются на стойках или опорах в соответствии с п.п. 10.4, 10.5)
- 10.2.3 Подготовку и установку блоков произвести руководствуясь 10.3...10.5.

10.3 Установка на заграждении или стене

- 10.3.1 При установке на заграждения, стены здания или другие поверхности, необходимо сориентировать БПРМ и БПРД вертикально, что соответствует углу наклона вектора поляризации антенн под углом 45° к прилежащей поверхности.
- 10.3.2 Вариант установки блоков на стене (заграждении). Блоки размещаются на выбранной высоте. Вначале производится разметка для крепления кронштейна КВЗ-3/0,2 (0,3; 0,4; 0,5; 0,5Т) или КВЗ-2Т. Центры отверстий располагаются в углах условного ромба 80×80 мм для КВЗ-3/0,2 (0,3; 0,4; 0,5; 0,5T) и прямоугольника 110×110 для КВЗ-2Т. Просверлить соответствующие отверстия в стене и с помощью шурупов или винтов (болтов) с соответствующими шайбами закрепить КВЗ на заграждении.
- 10.3.3 На кронштейне КВЗ-3/0 (0,2; 0,3; 0,4; 0,5; 0,5Т) необходимо выкрутить зажимной болт на наконечнике, затем установить в его паз шарового стержня бло-

ков БПРМ (БПРД) и затянуть болт до жёсткого закрепления шара стержня в пазе. При синхронизации по радиолучу необходимо исключить возможное взаимовлияние смежных участков, когда БПРД одного участка направлен на БПРМ другого участка.

Рис. 10.2

10.3.4 Для проведения юстировки по азимуту и углу места при использовании шарового стержня (см. рис.10.2) необходимо ослабить зажимной болт до обеспечения возможности поворота шарового стержня блока с мягким усилием. Повернуть блок БПРМ (БПРД) в направлении блока БПРД (БПРМ) данного участка. Затянуть болт до жёсткого закрепления шара стержня в шарнире.

10.4 Установка на специальных стойках

- 10.4.1 При установке блоков на специальных стойках необходимо сориентировать положение блоков БПРМ и БПРД под углом 45° относительно поверхности земли, для получения расширенной 3О, или вертикально - для более узкой 3О.
- 10.4.2 Виды исполнений стоек, опор для установки стоек, узлов крепления блоков на стойках приведены в таблице 10.1.

Для крепления на стойках необходим переходной кронштейн КВЗ-3/0.

Таблица 10.1

СТ-Пр3	Стойка высотой 0,8 м без возможности изменения высоты
CT-1/1,0 (1,4)	Стойка высотой 1,0 (1,4) м для установки БПРД (БПРМ)
CT1-a*	Стойка высотой 1,4 м диаметром 57 мм
CT-2*	Стойка телескопическая

CT-3*	Стойка с дискретно изменяемой высотой
OCT-1/0,5 (/0,8; /1)*	Опора 0,5 (0,8; 1,0) м для крепления стоек в грунт
УК-СТ1	Узел крепления БПРД (БПРМ) на стойке CT-1 и CT1-а
УК-СТ3	Узел крепления БПРД (БПРМ) на стойке СТ-3

*Примечания. На стойках СТ1 и СТ1-а изменение высоты установки блоков БПРМ (БПРД) (0,8...1.35м) обеспечивается перемещением УК-СТ1 по стойке. На СТ2 изменение высоты установки блоков обеспечивается дискретным перемещением итиля с шагом 0,05м от 0,8 до 1,35м. На СТ3 изменение высоты установки блоков обеспечивается перемещением УК-СТ3 дискретно с шагом 0.05 м от 0.8 м до 1,35м. Опоры также изготавливаются в трех модификациях, отличающихся глубиной установки в грунт: 0,5 м, 0,8 м и 1,0 м (выбираются исходя из обеспечения необходимой устойчивости стоек в конкретном грунте). В комплект поставки могут включаться два дополнительных хомута для крепления кабелей к стойке.

10.4.3. Подробнее о выборе стоек см. на сайте: www.tso-perimetr.ru.

10.5 Установка на столбе или трубе

- 10.5.1 При установке БПРМ и БПРД на столбе или трубе необходимо сориентировать их под углом 45° относительно поверхности земли, для получения расширенной 3О, или вертикально для более узкой 3О.
- 10.5.2 Выбрать или установить столб или трубу диаметром от 50 до 500 мм для крепления блоков. Если выбранная труба имеет прямоугольное или другое сечение заказать в комплект поставки или изготовить специальные скобы хомуты. При установке учесть характеристики грунта и обеспечить устойчивость и долговечность создаваемой конструкции, возможно, потребуется бетонирование части столба или трубы, заглубленной в грунт.
- 10.5.3 На трубе или столбе с помощью болтов, гаек и шайб устанавливается необходимый УЗК для одного БПРМ (БПРД) (см. табл. 10.2). Высота установки определяется оперативно-тактическими соображениями и конкретными условиями. Ориентировочная высота установки БПРМ (БПРД) 0,8...1,4м от усредненной поверхности земли (пола) до нижней части БПРД (БПРМ).

Таблица 10.2

Название узла крепления	Минимальный диаметр	Максимальный диаметр
	трубы (столба), мм	трубы (столба), мм
УЗК-2/150 (УЗК-2/500)	50 (100)	150 (500)
УЗК-3/110 (УЗК-3/150)	80 (100)	110 (150)

11. ПОДГОТОВКА ИЗВЕЩАТЕЛЯ К РАБОТЕ

11.1 Подготовка извещателя

- 11.1.1 Подготовка извещателя к работе проводится двумя операторами, допущенными к работе с электроустановками напряжением до 1000 В.
- 11.1.2 Подготовка к работе производится после установки на твердой несущей основе (стойка, столб, заграждение и т. п.) блоков, заземления и подключения проводов, прокладки и подключении кабельной сети питания и сигнализации.
 - 11.1.3 Для подготовки извещателя к работе выполнить следующие действия:
- 1) выбрать частотную литеру и произвести соответствующие подключения проводов БПРМ и БПРД;
 - 3) произвести юстировку;

- 4) произвести регулировку чувствительности;
- 5) произвести проверку работоспособности.

11.2 Юстировка извещателя

11.2.1 Произвести визуальную юстировку, для чего незначительно изменять вертикальные и горизонтальные углы БПРД и БПРМ до тех пор, пока лицевые поверхности БПРД и БПРМ не будут направлены друг на друга. Если извещатель формирует ложные сигналы тревоги, уточнить юстировку путем углового смещения блоков.

11.3 Регулировка чувствительности

- 11.3.1 Оператору отойти от БПРД и расположиться на расстоянии 1 м от него в направлении БПРМ и в 2 м от условной осевой линии, контролируемого данным извещателем, участка рубежа.
 - 11.3.2 Оператору произвести пересечение рубежа в положении «стоя».
- 11.3.3 Повторить п. 11.3.2 на различных отрезках рубежа в различных положениях «стоя», «согнувшись», «на корточках» при условии обязательного пересечения 3О телом оператора. Оператору отходить от условной осевой линии на расстояние большее половины ширины 3О, руководствуясь информацией раздела 4.
- 11.3.4 Выбрать необходимую чувствительность переключением проводов коричневой пары жгута БПРМ на «+» или «-» напряжения питания.

ВНИМАНИЕ! Установка повышенной чувствительности может приводить к срабатываниям от мелких (>3 кГ) животных!

11.4 Регулировка ширины 30 телескопическими кронштейнами

- 11.4.1 Данная регулировка используется только при установке извещателя вдоль отражающего заграждения, включая сетчатое, с использованием телескопических кронштейнов КВЗ-3/0,5Т (рис. 11.1) и КВЗ-2Т. (рис.11.2).
- 11.4.2 Установить длину КВЗ-3/0,5Т или КВЗ-2Т в среднее положение, для чего открутить соединительные болты и, перемещая подвижную часть кронштейна, выбрать его обшую длину для KB3-3/0.5T ~ 0.25 м, для KB3-2T \sim
- 11.4.3 Проверить отсутствие людей и животных на расстоянии 5 м от условной осевой линии контролируемого участка рубежа. Расположиться у БПРМ таким образом, чтобы можно было наблюдать за свечением индикаторов.
- 11.4.4 Подать команду оператору на пересечение 3О в положении «в рост» со скоростью около 0,5 м/с и остановиться при включении индикатора, при этом

Рис. 11.2

горизонтальный размер (ширину) 3О определять как удвоенное расстояние от оператора до оси 3О. При необходимости, увеличить размер 3О, уменьшая длину кронштейнов, или уменьшить размер 3О, увеличивая длину кронштейнов. Между пересечениями рубежа в исходном положении выдерживать паузы 2...3 мин.

11.5 Проверка извещателя

11.5.1 Оператору на рубеже отойти от БПРД на расстояние 3 м в направлении БПРМ и в 4 м от условной осевой линии контролируемого участка рубежа.

0,75 m.

- 11.5.2 Оператору на рубеже произвести пересечение рубежа в положении «стоя» и немедленно покинуть ЧЗ (отойти от оси ЧЗ на расстояние не менее 4 м).
- 11.5.3 Повторить п. 11.5.2 на различных отрезках рубежа в положениях «стоя», «согнувшись» и «на корточках», при условии обязательного пересечения 3О телом. Оператору отходить от условной осевой линии на расстояние не менее 5 м.

Извещатель находится в дежурном режиме.

12.РЕГЛАМЕНТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ

- 12.1 Обшие положения
- 12.1.1 Настоящий регламент технического обслуживания является основным документом, определяющим виды, содержание, периодичность и методику выполнения регламентных работ на извещатель.
- 12.1.2 Под техническим обслуживанием понимаются мероприятия, обеспечивающие контроль за техническим состоянием извещателя.
- 12.1.3 Своевременное проведение и полное выполнение работ по техническому обслуживанию в процессе эксплуатации является одним из важных условий поддержания извещателя в рабочем состоянии.
- 12.1.4 Техническое обслуживание извещателя предусматривает плановое выполнение комплекса профилактических работ в объеме следующих регламентов:

регламент № 1 - ежемесячное техническое обслуживание;

регламент № 2 - полугодовое техническое обслуживание.

- 12.2. Перечень операций технического обслуживания
- 12.2.1 Регламент № 1:

внешний осмотр извещателя;

проверка работоспособности извещателя;

проверка смазки элементов крепления блоков извещателя;

проверка эксплуатационной документации.

12.2.2 Регламент № 2:

внешний осмотр извещателя;

проверка работоспособности извещателя;

проверка смазки элементов крепления блоков извещателя;

проверка эксплуатационной документации;

проверка состояния соединительных кабелей.

- 12.3 Методика проведения операций технического обслуживания.
- 12.3.1 Внешний осмотр извещателя.
- 12.3.1.1 При внешнем осмотре проверить:

плотно ли закрыты крышки блоков извещателя;

отсутствие нарушения окраски, следов коррозии;

отсутствие порывов и подрезов на соединительных кабелях;

надежность крепления блоков извещателя.

- 12.3.2 Проверка работоспособности извещателя.
- 12.3.2.1 Операторам расположиться в пределах прямой видимости, одному у БПРМ, а другому у в 4...5 м от оси зоны обнаружения.
- 12.3.2.2 Оператору на рубеже осуществлять попытки преодоления рубежа охраны в различных точках. После каждой попытки оператору фиксировать выдачу сигнала тревоги. Попытки преодоления произвести через (2...3) м по всему рубежу. В режиме тревоги на панели БПРМ прерывисто светится индикатор.

- 12.3.3 Проверка смазки элементов крепления блоков извещателя.
- 12.3.4 Проверка эксплуатационной документации.
- 12.3.4.1 Проверить наличие руководства.
- 12.3.5 Проверка состояния соединительных кабелей.
- 12.3.5.1 Отключить источник питания.
- 12.3.5.2 Отключить все провода блоков извещателя.
- 12.3.5.3 Промыть этиловым спиртом (ГОСТ 18300-87) в соответствии с действующими нормами расхода.
- 12.3.5.4 Проверить с помощью мегомметра с напряжением до 500 В сопротивление между жилами и заземлителем. Значение должно быть не менее 0,5 МОм.
 - 12.3.5.5 Подключить провода согласно электрической схеме и закрыть блоки.
- 12.4 Для проведения регламентных работ необходимы: ампервольтметр Ц4313 или другой прибор с характеристиками не хуже указанного; мегомметр с напряжением до 500 В; отвертки; ключ 7811-0457 ГОСТ 2839-80; пассатижи; кусачки; шанцевый инструмент; ветошь; смазка (типа К-17, ЦИАТИМ-201; технический вазелин ГОСТ 15975-70); этиловый спирт ГОСТ 18300-87; керосин.

13. ОБСЛУЖИВАНИЕ КОНТРОЛИРУЕМОГО РУБЕЖА

- 13.1 Обслуживание рубежа производится лицами, прошедшими соответствующий инструктаж по технике безопасности.
- 13.2 Необходимо следить, чтобы в чувствительной зоне травяной и кустарниковый покров в 3О не превышал 0,3 м (достигается выкашиванием или каким-либо другим способом).
- 13.3 В сезоны, когда снежный покров изменяется выше допустимого предела (см. п. 10.1), необходимо расчистить снег в ЧЗ или изменить высоту установки БПРМ и БПРД. После изменения высоты установки извещателя, необходимо про-извести его юстировку и настройку по изложенным выше методикам.

14. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 14.1 Хранение извещателя должно осуществляться в упаковке заводаизготовителя по условиям хранения 3 (не отапливаемое хранилище) ГОСТ 15150-69. «Машины, приборы и технические изделия. Исполнение для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды в отсутствии агрессивных испарений».
- 14.2 Транспортирование извещателя в заводской упаковке должно производиться самолетом в гермоотсеке, железнодорожным транспортом в крытых вагонах, контейнерах без ограничения расстояния, автомобильным транспортом по грунтовым дорогам со скоростью 40 км/ч на расстояние до 1000 км.

Примечание. При транспортировании железнодорожным транспортом вид отправки должен быть малотоннажным.

15. ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Наименование неисправности, внешние проявление и признаки	Вероятная причина	Метод устранения
1. При закрытой крышке БПРМ не замыкается выходное реле	-	а) Плотно закрыть крышку БПРМ
2. На лицевой панели БПРМ не светится ни один индикатор	Отсутствует питание БПРМ	Подать питание
3. Постоянно светится индикатор	а) Отсутствует питание БПРД	а) Подать питание
дикатор	б) нарушена юстировка	б) произвести юстировку
4. Частые ложные срабаты-	а) повышенная помехо- вая обстановка	a) Выполнить указания раздела 10.1
	б) завышена чувствительность	б) Отрегулировать чувст- вительность
вания	в) нарушена юстировка	в) произвести юстировку
	г) чувствительную зону пересекают животные	г) перекрыть доступ животным или уменьшить чувствительность
5. Извещатель не всегда формирует сигнал ТРЕВОГА	а) занижена чувствитель- ность	a) Отрегулировать чувствительность

440000, Россия, г. Пенза, Главпочтамт, а/я 3322

(841-2) - 54-12-68 8 (800) 333-12-32

техническая поддержка по извещателям: +7 (495) 204-27-72

E-mail: info@TSO-perimetr.ru
<a href="mailto:httpp://example.com/httpp://example.com/httpp://example.com/httpp://example.com/httpp://example.com/http://example.c